Solution for 2022/day08-part1
This commit is contained in:
parent
28502ae6e2
commit
de0e28bb03
8
2022/day08-part1/Cargo.toml
Normal file
8
2022/day08-part1/Cargo.toml
Normal file
@ -0,0 +1,8 @@
|
|||||||
|
[package]
|
||||||
|
name = "day08-part1"
|
||||||
|
version = "0.1.0"
|
||||||
|
edition = "2021"
|
||||||
|
|
||||||
|
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
|
||||||
|
|
||||||
|
[dependencies]
|
||||||
151
2022/day08-part1/src/main.rs
Normal file
151
2022/day08-part1/src/main.rs
Normal file
@ -0,0 +1,151 @@
|
|||||||
|
// Custom data structure representing a single tree.
|
||||||
|
// We store its height and keep track from which cardinal directions it is visible.
|
||||||
|
#[derive(Debug, Copy, Clone)]
|
||||||
|
struct Tree {
|
||||||
|
height: i8,
|
||||||
|
visible_n: bool,
|
||||||
|
visible_s: bool,
|
||||||
|
visible_w: bool,
|
||||||
|
visible_e: bool,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Tree {
|
||||||
|
fn new(height: i8) -> Tree {
|
||||||
|
Tree {
|
||||||
|
height,
|
||||||
|
visible_n: true,
|
||||||
|
visible_s: true,
|
||||||
|
visible_w: true,
|
||||||
|
visible_e: true,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// A tree is visible if it can be seen from at least one cardinal direction.
|
||||||
|
fn visible(&self) -> bool {
|
||||||
|
self.visible_n || self.visible_s || self.visible_w || self.visible_e
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// A custom struct for the whole forest.
|
||||||
|
#[derive(Debug)]
|
||||||
|
struct Forest {
|
||||||
|
field: Vec<Tree>,
|
||||||
|
dim: usize,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Forest {
|
||||||
|
// Pretty printer for the forest, using terminal escape codes to color
|
||||||
|
// the hidden trees bold and red.
|
||||||
|
fn print(&self) {
|
||||||
|
for y in 0..self.dim {
|
||||||
|
for x in 0..self.dim {
|
||||||
|
let tree = self.field[y * self.dim + x];
|
||||||
|
if !tree.visible() {
|
||||||
|
print!("\x1b[1;31m");
|
||||||
|
}
|
||||||
|
print!("{}", tree.height);
|
||||||
|
if !tree.visible() {
|
||||||
|
print!("\x1b[0m");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
println!();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Easy accessor for a tree using x and y coordintes.
|
||||||
|
fn at(&mut self, x: usize, y: usize) -> &mut Tree {
|
||||||
|
&mut self.field[y * self.dim + x]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn main() {
|
||||||
|
// Use command line arguments to specify the input filename.
|
||||||
|
let args: Vec<String> = std::env::args().collect();
|
||||||
|
if args.len() < 3 {
|
||||||
|
panic!("Usage: ./main <input-file> <map-dimensions>\nNot enough arguments. Exiting.");
|
||||||
|
}
|
||||||
|
|
||||||
|
// Next, read the contents of the input file into a string for easier processing.
|
||||||
|
let input = std::fs::read_to_string(&args[1]).expect("Error opening file");
|
||||||
|
// Line-by-line processing is easiest.
|
||||||
|
let input = input.lines();
|
||||||
|
// Also get the dimension of the map.
|
||||||
|
let dim = args[2].parse::<usize>().unwrap();
|
||||||
|
|
||||||
|
// --- TASK BEGIN ---
|
||||||
|
|
||||||
|
// First, parse the whole file into a two-dimensional array.
|
||||||
|
let mut forest = Forest {
|
||||||
|
field: Vec::with_capacity(dim * dim),
|
||||||
|
dim,
|
||||||
|
};
|
||||||
|
|
||||||
|
// Simply iterate through all lines and characters.
|
||||||
|
for line in input {
|
||||||
|
for char in line.chars() {
|
||||||
|
// Convert the character value into the respective number.
|
||||||
|
forest.field.push(Tree::new(((char as u8) - b'0') as i8));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Now that we have the data, go through each row and column twice.
|
||||||
|
// In essence we place an observer at the top and bottom of every column
|
||||||
|
// and an observer at the east and west end of every row.
|
||||||
|
// Then, we check which trees are visible for that observer,
|
||||||
|
// recording the result in `VisibleDirections`.
|
||||||
|
for i in 0..forest.dim {
|
||||||
|
// Initialize the variables keeping track of the largest tree encountered along the way.
|
||||||
|
let mut max_n: i8 = -1;
|
||||||
|
let mut max_s: i8 = -1;
|
||||||
|
let mut max_w: i8 = -1;
|
||||||
|
let mut max_e: i8 = -1;
|
||||||
|
|
||||||
|
for j in 0..forest.dim {
|
||||||
|
// Get the current tree in this loop iteration as seen from the north.
|
||||||
|
let tree_n = forest.at(i, j);
|
||||||
|
// Check if that tree is obscured from view and update its visibility.
|
||||||
|
if tree_n.height <= max_n {
|
||||||
|
tree_n.visible_n = false;
|
||||||
|
}
|
||||||
|
// Update the largest recorded height.
|
||||||
|
max_n = std::cmp::max(max_n, tree_n.height);
|
||||||
|
|
||||||
|
// Now repeat the exact same steps for the other three directions.
|
||||||
|
|
||||||
|
// SOUTH
|
||||||
|
let tree_s = forest.at(i, forest.dim - j - 1);
|
||||||
|
if tree_s.height <= max_s {
|
||||||
|
tree_s.visible_s = false;
|
||||||
|
}
|
||||||
|
max_s = std::cmp::max(max_s, tree_s.height);
|
||||||
|
|
||||||
|
// WEST
|
||||||
|
let tree_w = forest.at(j, i);
|
||||||
|
if tree_w.height <= max_w {
|
||||||
|
tree_w.visible_w = false;
|
||||||
|
}
|
||||||
|
max_w = std::cmp::max(max_w, tree_w.height);
|
||||||
|
|
||||||
|
// EAST
|
||||||
|
let tree_e = forest.at(forest.dim - j - 1, i);
|
||||||
|
if tree_e.height <= max_e {
|
||||||
|
tree_e.visible_e = false;
|
||||||
|
}
|
||||||
|
max_e = std::cmp::max(max_e, tree_e.height);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Now, count the number of visible trees.
|
||||||
|
let mut visible_count = 0;
|
||||||
|
for x in 0..forest.dim {
|
||||||
|
for y in 0..forest.dim {
|
||||||
|
if forest.at(x, y).visible() {
|
||||||
|
visible_count += 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Print the forest and the total number of visible trees.
|
||||||
|
forest.print();
|
||||||
|
println!("Total trees visible: {}", visible_count);
|
||||||
|
}
|
||||||
Loading…
Reference in New Issue
Block a user