Combined solution for parts 1+2 of 2022/day19, both finishing in <2 sec

This commit is contained in:
Tobias Marschner 2024-04-10 10:51:19 +02:00
parent aadb672532
commit 19d5613bd9
2 changed files with 133 additions and 25 deletions

View File

@ -1,5 +1,5 @@
[package]
name = "day19-part1"
name = "day19"
version = "0.1.0"
edition = "2021"

View File

@ -13,11 +13,9 @@ struct Blueprint {
optimal_geode_count: u16,
}
const TOTAL_RUNTIME: usize = 24;
impl Blueprint {
// Solve the given blueprint using BFS.
fn solve_bfs(&mut self) {
fn solve_bfs(&mut self, total_runtime: u16) {
// For performance reasons we will search the solution space using breadth-first search.
// vec_a has the RecursionStates for the current timeslot, while vec_b has the next slot's states.
@ -39,8 +37,21 @@ impl Blueprint {
// Iterate over all timeslots.
// Building a robot at t=1 cannot influence the final geode-count,
// so it's omitted from the simulation here.
for ts in (2usize..=TOTAL_RUNTIME).rev() {
// println!("Now at {} remaining time. Processing {} input RSs ...", ts, next_hs.len());
let mut early_exit = false;
for ts in (2u16..=total_runtime).rev() {
// Have we reached >= 2^20 elements on the input? Time to go for DFS instead.
// Additionally, the queue-overhead shouldn't be worth it for the last few timesteps.
if vec_a.len() >= 2u64.pow(20) as usize || ts <= 3 {
// println!("Switching to recursive solving ...");
// Iterate over all possibilities and run recursively.
for rs in &vec_a {
self.solve_recursive(*rs, ts);
}
// And now we're done proper, no need to run the remaining loop iterations.
early_exit = true;
break;
}
// Process every RS of the past timeslot
// to find all the states for the current timeslot.
@ -104,32 +115,111 @@ impl Blueprint {
}
// Done!
println!("Finished simulation round for t = {}", ts);
println!(" inserted elements: {}", vec_b.len());
// println!("Finished simulation round for t = {}", ts);
// println!(" inserted elements: {}", vec_b.len());
// Prune elements.
prune_states(&mut vec_b, &mut vec_a);
println!(" elements after prune: {}", vec_a.len());
// println!(" elements after prune: {}", vec_a.len());
// Clear vec_b since all the relevant states have been copied over to vec_a.
vec_b.clear();
// for e in &vec_a {
// e.print();
// println!();
// }
// println!();
//
// if ts == 15 {
// std::process::exit(1);
// }
}
// Collect and print the final geode count.
// Remember that we still have to simulate the geode-collection for t=1,
// hence `e.geode + e.geode_robots as u16`.
self.optimal_geode_count = vec_a.iter().map(|e| e.geode + e.geode_robots as u16).max().unwrap();
println!("Found optimal geode count: {}", self.optimal_geode_count);
if !early_exit {
self.optimal_geode_count = vec_a
.iter()
.map(|e| e.geode + e.geode_robots as u16)
.max()
.unwrap();
}
// println!("Found optimal geode count: {}", self.optimal_geode_count);
}
// Solve the task recursively, providing the current state and remaining time.
// Essentially, and in contrast to `solve_bfs`, this recursive solver performs
// depth-first-search (DFS) on the solution space instead of BFS.
// This removes our ability to prune redundant elements, but doesn't require
// keeping a queue of elements, making for a *much* lighter memory footprint.
// Recommended for the final few timesteps.
fn solve_recursive(&mut self, rs: RecursionState, t: u16) {
// print!("t = {}, ", t);
// rs.print();
// println!();
// Exit condition. If t == 1, we're basically done.
// No need to build the final robot, it can't influence the final geode result.
// Simply add one more round of harvesting (rs.geode_robots) and check for improvements.
if t == 1 {
let next_geode_count = rs.geode + rs.geode_robots as u16;
if next_geode_count > self.optimal_geode_count {
// Update the optimal result, if improved.
self.optimal_geode_count = next_geode_count;
}
return;
}
// Check a cutoff-condition, in case this branch is not worth it.
let upper_bound = rs.geode // The resources we already have.
// The resource the already existing robots would produce.
+ rs.geode_robots as u16 * t
// The resources we would get if we produced one robot every timeslot.
// This is the triangular number for (t - 1).
+ (t - 1) * t / 2;
// Now check if this would be an improvement.
if upper_bound <= self.optimal_geode_count {
// No point continuing.
return;
}
// The following section is basically the same as in `solve_bfs`.
// Copy over the current state and let time for it pass.
// This is the same no matter what type of robot we build since the robot will
// go live at the end of the timeslot, not at its beginning.
let mut next_rs = rs;
next_rs.ore += next_rs.ore_robots as u16;
next_rs.clay += next_rs.clay_robots as u16;
next_rs.obsidian += next_rs.obsidian_robots as u16;
next_rs.geode += next_rs.geode_robots as u16;
// Check whether we can build the different robots, using `rs` and not `next_rs`
// since the resources have to be allocated at the beginning of the turn.
// (1) Ore Robot
if rs.ore >= self.ore_robot_ore_cost {
let mut nrs = next_rs;
nrs.ore -= self.ore_robot_ore_cost;
nrs.ore_robots += 1;
self.solve_recursive(nrs, t - 1);
}
// (2) Clay Robot
if rs.ore >= self.clay_robot_ore_cost {
let mut nrs = next_rs;
nrs.ore -= self.clay_robot_ore_cost;
nrs.clay_robots += 1;
self.solve_recursive(nrs, t - 1);
}
// (3) Obsidian Robot
if rs.ore >= self.obsidian_robot_ore_cost && rs.clay >= self.obsidian_robot_clay_cost {
let mut nrs = next_rs;
nrs.ore -= self.obsidian_robot_ore_cost;
nrs.clay -= self.obsidian_robot_clay_cost;
nrs.obsidian_robots += 1;
self.solve_recursive(nrs, t - 1);
}
// (4) Geode Robot
if rs.ore >= self.geode_robot_ore_cost && rs.obsidian >= self.geode_robot_obsidian_cost {
let mut nrs = next_rs;
nrs.ore -= self.geode_robot_ore_cost;
nrs.obsidian -= self.geode_robot_obsidian_cost;
nrs.geode_robots += 1;
self.solve_recursive(nrs, t - 1);
}
// (5) Build nothing and let time pass.
self.solve_recursive(next_rs, t - 1);
}
}
@ -232,18 +322,36 @@ fn main() {
})
.collect::<Vec<_>>();
// Solve for every blueprint.
// PART ONE
// Solve for every blueprint with time 24.
for bp in &mut blueprints {
// Solve every blueprint with TOTAL_RUNTIME minutes of time.
println!("Solving Blueprint {}", bp.id);
bp.solve_bfs();
// println!("Solving Blueprint {}", bp.id);
bp.solve_bfs(24u16);
}
println!(
"Total Quality Level: {}",
"Total Quality Level for Part 1: {}",
blueprints
.iter()
.map(|b| b.id * b.optimal_geode_count)
.sum::<u16>()
);
// PART TWO
// Now solve the first three blueprints again, but for 32 minutes.
for bp in blueprints.iter_mut().take(3) {
bp.solve_bfs(32u16);
}
println!(
"Multiplied Geode Counts for Part 2: {}",
blueprints
.iter()
.take(3)
.map(|b| b.optimal_geode_count as u64)
.product::<u64>()
);
}